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1 Introduction

e We explore ensemble models for spoofing detection on the
ASVspoof 2019 logical access (LA) and physical access (PA)
datasets [1].

e We find models appear to have improved generalisation when
we partition those datasets to ensure disjoint attack conditions
[2].

e We examine why some models work so well and find they are
using specific irrelevant cues in the recordings.

2 Tasks and Model description
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4 What is the CNN exploiting in
the PA dataset?

e We find that a CNN performs much better when trained on the
last 4 seconds of every recording than on the first 4 seconds.

e We find this comes from silent segments in the spoof recordings.

Intervention I: remove silence from the end at test time.

Model t-DCF EER %
B1 0.2036 — 0.2741 9.18 — 13.27
B2 0.1971 — 0.2959 @ 10.06 — 15.59
CNN 0.1672 — 0.5018 0.98 — 19.8

Intervention Il: train the models removing silence from the end.

Model t-DCF EER %
B1 0.20306 — 0.9528 9.18 — 54.76
B2 0.1971 — 0.9463 | 10.06 — 57.98

CNN 0.1672 — 0.2626 0.98 — 11.20

Intervention lll: remove silence during both training and testing.

Model t-DCF EER %
B1 0.2036 — 0.8614 9.18 — 41.09
B2 0.1971 — 0.9448 | 10.06 — 5&.71

CNN 0.1672 — 0.3129 .98 — 12.85

How about the evaluation set?
e Models show similar behaviour under above interventions.

3 EXxperimental results

e Metric: tandem-DCF (t-DCF) [3] and equal error rate (EER)
o LFCC GMM (B1) and CQCC-GMM (B2) are official baselines
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Model  Set LA attack PA attack

t-DCF EER% t-DCF EER%

B1 0.0663 2.71 0.2554 11.96

B2 Dev 0.0123 0.43 0.1953 9.87
ensemble 0.0 0.0 0.0354 1.33
B1 0.2116 &.09 0.3017 13.54

B2 Eval 0.2366 9.57 0.2454 11.04
ensemble 0.0755 2.64 0.1492 6.11

5 Conclusion

e We find ensemble models are better than the baselines in de
tecting unseen spoofing attacks, yielding 3™ rank in the LA task.

e We find their performance on the PA task is inflated due to a cue
(existence of silence) in the recordings of the dataset [4].

e We propose removing this cue in the PA dataset [5] for more
reliable estimate of performance.
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