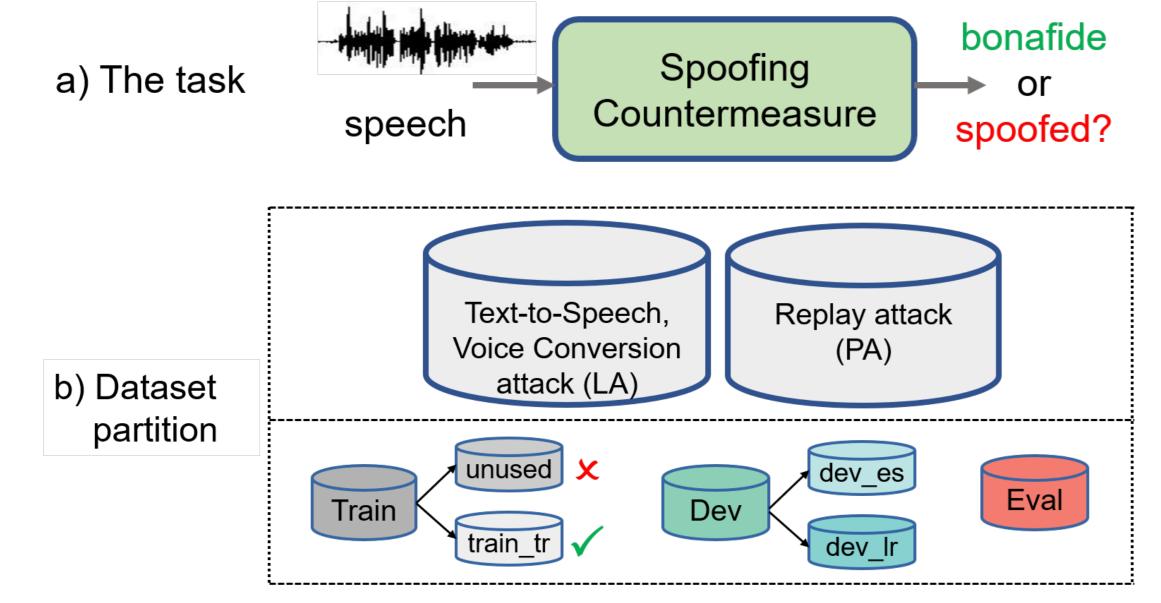
Ensemble Models for Spoofing Detection in Automatic Speaker Verification

Bhusan Chettri, Daniel Stoller, Veronica Morfi, Marco A. Martínez Ramírez, Emmanouil Benetos, Bob L. Sturm b.chettri@qmul.ac.uk

Introduction


•We explore ensemble models for spoofing detection on the ASVspoof 2019 logical access (LA) and physical access (PA) datasets [1].

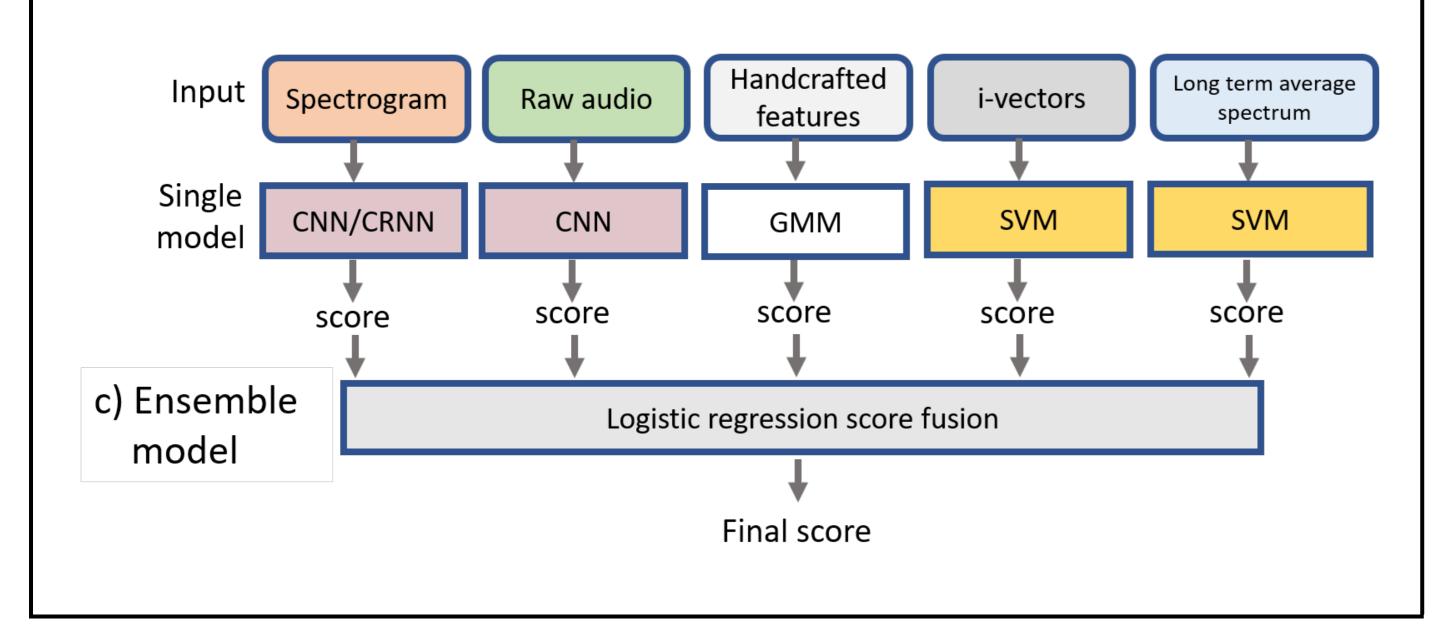
What is the CNN exploiting in 4 the PA dataset?

• We find that a CNN performs much better when trained on the last 4 seconds of every recording than on the first 4 seconds. • We find this comes from silent segments in the spoof recordings.

- •We find models appear to have improved generalisation when we partition those datasets to ensure disjoint attack conditions [2].
- We examine why some models work so well and find they are using specific irrelevant cues in the recordings.

2 Tasks and Model description

Intervention I: remove silence from the end at test time.


Model	t-DCF	EER %
B1	$0.2036 \rightarrow 0.2741$	$9.18 \rightarrow 13.27$
B2	$0.1971 \rightarrow 0.2959$	$10.06 \rightarrow 15.59$
CNN	$0.1672 \rightarrow 0.5018$	$5.98 \rightarrow 19.8$

Intervention II: train the models removing silence from the end.

Model	t-DCF	EER %
B1	$0.2036 \rightarrow 0.9528$	$9.18 \rightarrow 54.76$
B2	$0.1971 \rightarrow 0.9463$	$10.06 \rightarrow 57.98$
CNN	$0.1672 \rightarrow 0.2626$	$5.98 \rightarrow 11.20$

Intervention III: remove silence during both training and testing.

Model	t-DCF	EER %
B1	$0.2036 \rightarrow 0.8614$	$9.18 \rightarrow 41.09$
B2	$0.1971 \rightarrow 0.9448$	$10.06 \rightarrow 58.71$

Experimental results 3

• Metric: tandem-DCF (t-DCF) [3] and equal error rate (EER) • LFCC GMM (B1) and CQCC-GMM (B2) are official baselines

Model	Set	LA at	tack	PA attack	
MOUEI		t-DCF	EER%	t-DCF	EER%
B1		0.0663	2.71	0.2554	11.96
B2	Dev	0.0123	0.43	0.1953	9.87

		10.00 / 00.11	
CNN	$0.1672 \rightarrow 0.3129$	$5.98 \rightarrow 12.85$	

How about the evaluation set?

Models show similar behaviour under above interventions.

Conclusion 5

- We find ensemble models are better than the baselines in detecting unseen spoofing attacks, yielding 3^{rd} rank in the LA task. • We find their performance on the PA task is inflated due to a cue
- (existence of silence) in the recordings of the dataset [4].
- •We propose removing this cue in the PA dataset [5] for more reliable estimate of performance.
- [1] Massimiliano et. al. ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detection. In Proc. Interspeech, 2019.
- [2] Partition details: https://github.com/BhusanChettri/ASVspoof2019/.
- [3] Kinnunen et. al. t-DCF: a Detection Cost Function for the Tandem Assess-

ensemble		0.0	0.0	0.0354	1.33
B1		0.2116	8.09	0.3017	13.54
B2	Eval	0.2366	9.57	0.2454	11.04
ensemble		0.0755	2.64	0.1492	6.11

ment of Spoofing Countermeasures and Automatic Speaker Verification. In Proc. Speaker Odyssey, 2018.

- [4] B. L. Sturm. A Simple Method to Determine if a Music Information Retrieval System is a "Horse". In IEEE Transactions on Multimedia, 2014.
- [5] B. Chettri and B. L. Sturm. A Deeper Look at Gaussian Mixture Model Based Anti-Spoofing Systems. In *IEEE ICASSP*, 2018.

INTERSPEECH 2019 Conference, 15-19 September, Graz, Austria.